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Critical exponents of the self-avoiding walks on a family of 
finitely ramified fractals 
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Department of Physics and Meteorology, Faculty of Natural and Mathematical Sciences, 
Po Box 550, 11001 Belgrade, Yugoslavia 

Received 27 May 1986, in final form 21 July 1986 

Abstract. We have studied the self-avoiding walks (SAW) on a family of finitely ramified 
fractals. The first member ( b  = 2) of the family is the two-dimensional Sierpinski gasket, 
while the last member (b  = m) appears to be a wedge of the homogeneous triangular lattice. 
By means of the exact renormalisation group transformations we have calculated the critical 
exponents a, Y and y, and the connectivity constant p ,  of SAW on each member of a 
sequence ( 2 s  6 s 8) of the studied fractal family. The obtained exact results are compared 
with the recent phenomenological proposals and with the results believed to be exact in 
the case of a homogeneous two-dimensional lattice. 

1. Introduction 

The self-avoiding walk (SAW) model represents a random walk that must not contain 
self-intersections. Critical properties of this model on a homogeneous lattice, when 
the number of steps N tends to infinity, comprise a set of research problems of current 
interest. There are few well established results. A notable exception appears to be the 
critical exponent v for the mean squared end-to-end distance on two-dimensional 
homogeneous lattices. In this case the Flory prediction v = $ (Flory 1953, Fisher 1969) 
has been analytically (Nienhuis 1982) and numerically (Djordjevib et a1 1983, Rapaport 
1985) corroborated. At the same time, SAW on fractals have been studied (see, for 
example, Rammal et a1 1984) and two difficult problems have been encountered. One 
of them has brought about a lot of controversy. It concerns the relation between the 
universality classes of SAW on disordered (fractal) and SAW on homogeneous (transla- 
tionally invariant) lattices. The other problem can be formulated as an attempt to 
establish relations between the critical exponents of SAW on fractals and inherent 
properties of fractals, such as their fractal (6) and spectral (2) dimensions. This paper 
is a contribution to understanding the latter problem. 

We study SAW on a family of two-dimensional finitely ramified deterministic fractals. 
The whole family can be generated (Hilfer and Blumen 1984) by an infinite sequence 
of generators G(b, d), where b is an integer which runs from 2 to infinity and d is a 
dimension of the Euclidean space in which fractals are embedded (in our case d = 2). 
Each G(b, 2) is merely an equilateral triangle (see figure 1) that contains b2 identical 
smaller triangles of unit side length, out of which only the upward oriented, i.e. 

t Temporary address: Ecole Normale SupCrieure, Groupe de Physique des Solides, 24 rue Lhomond, 75231 
Paris, France. 
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Figure 1. Growing of the fractal lattices. The first row displays the first four stages of 
growing of the Sierpinski gasket ( b  = 2), whereas the second row shows the first three 
stages of growing of the next member ( b  = 3) of the fractal family. 

b(b+1)/2 altogether, are assumed to be physically present. The fractal related to 
G (  b, 2) is obtained in the limit n + 00 of the process: the structure at stage n results 
from the stage ( n  - 1) structure after filling with the latter all upward pointing triangles 
of G(b ,  2) enlarged by b". Thus the first member ( b  = 2) of the family is the two- 
dimensional Sierpinski iisket, whereas we may presume that the subsequent members 
converge to a wedge of tb compact triangular lattice, as the limiting generator G ( a ,  2) 
is nothing other than such a wedge. 

The fractal dimensions of the studied fractals are determined (Ben-Avraham and 
Havlin 1984, Hilfer and Blumen 1984) by the formula 

d=ln[b(b+l ) /2] / ln  b. (1.1) 

The corresponding spectral dimensions have been tabulated (Hilfer and Blumen 
1984) for 2 s b s 10 and, in principle, can be calculated for any larger b. Both d and 
d' are well defined functions of b and it is our objective to calculate exactly critical 
exponents of SAW as functions of b as well, assuming that by studying all these functions 
we will acquire certain knowledge of relations between the exponents and the properties 
of fractals. To this end in 0 2 we shall describe the appropriate renormalisation group 
(RG) analysis and elaborate on the derivation of the critical exponents a and v. In 
0 3 derivation of the critical exponent y will be worked out. Specific numerical results 
will be presented in 0 4, together with an overall discussion. 

2. Critical exponents n and Y 

It has been assumed (see, for example, McKenzie 1976) that the total number CN of 
distinct SAW of N steps and the total number PN of distinct SAW loops of N steps, 
averaged over all possible positions of the starting point, are, for very large N, 
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determined by the power laws 

c ~ - ~ ~ N ~ - '  

where p is the connectivity constant (the ratio C,+,/ CN approaches p when N + 00) 

and y and (Y are the associated critical exponents. By introducing the weight factor 
x (fugacity) for each step of the walk, the corresponding generating functions are 
defined to be 

(2.4) 

so that their leading singular terms, when x approaches l /p  from below, are of the form 

c ( X ) - ( l - x p ) - ?  (2.5) 

P ( x )  - (1 - xp)2-". (2.6) 

The above singular behaviour resembles the behaviour of the initial susceptibility and 
free energy of a magnetic system being close to its critical point. Indeed, it has been 
shown (de Gennes 1972, Domb 1972, des Cloizeaux 1974) that there is a remarkable 
correspondence between the SAW model and the n-component spin model in the limit 
n+0. 

Similarly, the mean squared end-to-end distance (R:) for N-step SAW is expected 
to obey, for large N, the power law 

( R k )  - N2" (2.7) 

so that an appropriate generating function 

has the leading singular term 

L ( x ) - ( l - x p ) - 2 y  (2.9) 

which parallels the correlation length criticality of the magnetic model system. 
In order to determine the critical exponents for SAW on fractals we adopt the RG 

approach introduced by Dhar (1978) for SAW on the truncated 3-simplex lattice. There 
are four restricted partition functions (see figure 2) which should be sufficient for 

Figure 2. A diagrammatic representation of the restricted generating functions for an 
rth-order triangle. The interior structure of the triangle is not shown. It is represented by 
wiggles of the SAW path, which in the A"' case, for example, starts somewhere within the 
triangle and leaves it a t  its upper corner. 
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representing the generating functions C(x), P ( x )  and R ( x )  at an arbitrary ( r )  stage 
of the coarse-graining process (figure 3) .  The starting values (pertinent to a unit 
triangle) of these functions are 

A''' = J;; B'O' = x C'O'= 0 D'O' = 0 (2.10) 

while their later values A"), B(r ) ,  C'" and D ( r )  are sums (weights) of all possible walks 
within the rth-order triangle consistent with the constraints depicted in figure 2. Since 
the fractals are self-similar, the recursion relations between two consecutive sets of 
parameters, i.e. between the ( r  + 1)th- and rth-order parameters, should be independent 
of r. For this reason we can obtain the recursion relations for each member of the 
studied fractal family by summing all pertinent walks within the corresponding gen- 
erator. The following relations are evident: 

B(r+1) =fb(B(r) )  (2.11a) 

(2.11b) 
C(r+l) = ( L ~ ( A ( ~ ) ,  ~ ( r ) ,  c(r)) (2.11c) 

(2.11d) 

For b = 2 specific forms of the functions f, cp, (L and 4 were found by Dhar (1978). 
For b = 3 and b = 4 we have determined functions 40 and IF, by a straightforward, 
but arduous, summing of all possible SAW paths. However, for b > 4 the work has to 
be computerised. In appendix 1 we present our results for 3 S b s 8, and here we shall 
study the RG transformations (2.11) for general b. 

It follows from (2.11) that the B coordinate of a non-trivial fixed point 
(A*, B*, C*, D*)  of the RG transformations (2.1 1) can be found by solving the equation 

A('+') = cpb(A(r), g(r),  c")) 

D ( r + l )  = 4b(A(r), B ( r ) ,  c"), ~ ( ' 1 )  

B* =fb(B*) (2.12) 

independently of the similar RG equations for the other three coordinates. One can 
verify that for B* > 0 equation (2.12) has only one solution which lies in the interval 
O <  B* < 1 .  Indeed, f b (  E )  is a sum of the form 

b( b+ 1 ) / 2  

1 IbiB' 
i = b  

(2.13) 

where the coefficients 1bj are positive integers (see appendix 1). Hence, the function 
y ( B )  = f b ( B ) / B  - 1 is a monotonically increasing function from y ( 0 )  = -1  up toy(  1) > 1 
and, on this ground, in the interval ( 0 , l )  there is a unique B* such that y ( B * )  =0, i.e. 

Figure 3. One step of the coarse-graining process in the case of the b = 2 fractal. 
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or 

(2.14) 
i = b  

which proves the uniqueness of the solution of equation (2.12). 
Furthermore, by solving equation (2.12) one obtains not only a coordinate of the 

fixed point but the connectivity constant as well. This can be demonstrated by starting 
with Dhar’s finding (Dhar 1978) for the generating function (2.4) for b = 2 

“ 1  
P2(x)= 1 p P - 9 3  (2.15) 

r = l  

and by verifying 

“ 1  y[3( B(r-1))3 + 3( B(r-1))5 + ( B(r-1))6] 
r = 1 6  

P3(x) = (2.16) 

P4(x) = c “ 1  ~ [ 6 ( B ‘ r ~ 1 ’ ) 3 + 9 ( B ‘ r - ” ) S + 4 B ‘ r - L ’ ) 6  
r = l  

(2.17) + 12(~(r-1))7 +9(  B(r-1))8 +4( B(r-1))9 + 3( ~ ( r - I ) ) 1 0 ]  

for b = 3 and b = 4, respectively. Accordingly, for general b one can write 

(2.18) 

where Yb(B(r- l ) )  is a polynomial in B(r - lJ .  Equation (2.18) can be rewritten in the form 

(2.19) 

which, according to the initial condition (2.10), is equivalent to the transformation 

pb (B‘” )  = ib( b + 1 )  pb( B‘O’) - Yb (B‘O’) (2.20) 

whose fixed points are the fixed points of (2.1 l a ) .  Hence for B‘O’ less than the non-trivial 
B* of (2.12), B(” decreases and & ( x )  may be finite, whereas for B‘O’ larger than B* 
the successive values of B“’ increases and pb(x) diverges. For this reason 1/B* can 
be (Dhar 1978) identified with the connectivity constant p that appears in equation (2.6). 

The critical exponent a, defined by (2.6), can be determined by assuming x = B* - 6, 
where S is a vanishingly small positive number, and by realising that for such an x 
the polynomial Yb(x) is finite and E ( ’ )  is equal to x - A l a ,  where A ,  is given by 

(2.21) 

Inserting these findings into equation (2.20), and keeping in mind (2.6), one obtains 
2 - 0  2 - a  

( + A l )  - f b ( b + l ) ( + )  (2.22) 

or 

a =2-{ln[~b(b+l)] / lnA1}.  (2.23) 
In the next section we present the specific values of A I  and a for the studied sequence 
of fractals. 
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Knowledge of the eigenvalue A I  allows one to calculate the critical exponent v, 
providing one assumes that the same exponent v describes criticality of the end-to-end 
distance and the correlation length as well. To demonstrate this we apply the scaling 
argument (see, for example, Stanley et a1 1982) which asserts that after one step of 
the renormalisation (see figure 3) all lengths in the rescaled system are reduced by the 
factor b from the lengths in the original system. Hence the end-to-end distance R 
transforms as 

( I  - /LX ’ ) -~  = b-’( 1 - /AX)-” (2.24) 

where x and x’ are the two successive weights of the SAW step, which means that they 
can be substituted by, for example, B‘O’ and B”), respectively. Thus, from the above 
equation, and from the established fact B* = 1/p,  one finds 

v = In b/{ln[(B* - B”’)/(B* - B‘O’)]} (2.25) 

and using the linearised RG transformation (2.1 l a ) ,  i.e. B‘” - B* = A,(B“’- B*) ,  one 
finally obtains 

(2.26) 

The two results, (2.23) and (2.26) for the critical exponents and expression (1.1) for 
the fractal dimension, can be combined to give 

d v = 2 - a  (2.27) 

which turns out to be a hyperscaling relation (generalised by the appearance of 6) 
valid for all fractals of the family studied. 

v = In b/ln A l .  

- 

3. Critical exponent y 

Derivation of the critical exponent y, for an arbitrary member of the fractal family, is 
a little more complex than the derivation presented of (Y and v. First we observe that, 
in addition to the expression (2.13), the remaining three RG transformations (2.1 1 )  
should have the following structure: 

A’= a I ( B ) A +  ~ 2 (  B)C ( 3 . 1 ~ )  

C’ = C,( B)A+ c,( B ) C  

D’ = dl(B)A’+ d2(  B)AC + d3(B)C2+ d , ( B ) D  

( 3 . l b )  

( 3 . 1 ~ )  

where a , ( B ) ,  c i ( B )  and d i ( B )  are some polynomials in B while A(‘+’), A“), C(r+l), 
C ( r ) ,  Dlri-’’ and D ( r )  have been abbreviated to A’, A, C’, C, D’ and D, respectively. 
Next we follow Dhar (1978) and introduce the increment 

(3.2) 
which, according to equations (2.11a), (2.13) and (2.21), satisfies, to the lowest order 
in 6, the recursion relation 

8 ( r )  = B* - Blr) 

a I r + l )  = A 1 8 ( r ) .  

The initial value 8“) we choose to satisfy the inequality 
(3.3) 
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where E is some small positive number. Besides, we define the marker ro by the relation 

r,=In(e/S'o')/ln ,il > > I  (3 .5)  

r = ln(S'r)/L3'o))(ln A I ) - '  (3 .6)  

so that, by comparing the latter with 

which follows from (3.3),  we can conclude that S'"< E for r < r,, and consequently 
we can replace B'" in ( 3 . 1 ~ )  and (3 .16)  by B*. Hence the transformations become 
linear: 

A ' =  a l ( B * ) A + a 2 ( B * ) C  (3 .7)  

C' = c1( B * ) A +  c2(B*)C (3 .8)  

and for 1 < r < ro we can write 

A ( ' ) =  KIA; 

C ( r ' =  K2A; 

(3 .9)  

(3.10) 

where K i  ( i  = 1,2, . . . ) denote henceforth some constants of proportionality and A 2  is 
the larger eigenvalue of the 2 x 2  matrix formed of the coefficients a , ( B * )  and c i ( B * ) ,  
i.e. 

A 2  = { a , ( B * ) +  c , ( B * ) + [ ( a , ( B * )  - c z ( B * ) ) ' + 4 c l ( B * ) a 2 ( B * ) 1 ' / 2 ) / 2 .  
(3.11) 

Inserting (3 .7) ,  (3 .8)  and B = B* in ( 3 . 1 ~ )  we obtain 

or  

D'') = K 3 { (  A : ) r  - [ d4( B*)] ' } / [A:  - d4( B * ) ]  (3.13) 

which means that the behaviour of D") is determined either by A: if it is bigger than 
d 4 ( B * ) ,  or  vice versa. However, one can show that d4(B*) is equal to A I  given by 
(2.21).  In fact all SAW that contribute to the fourth term on the right-hand side of 
equation ( 3 . l c ) ,  i.e. all contributions to d4(B)D,  can be obtained from all contributions 
to fb( B )  by changing each elementary step of type B into an  elementary break of type 
D (see figure 4). Thus each SAW of the length i that contributes to f b (B)  (according 
to relation (2.13) there are I b i  such SAW) changes into i s ~ w  of length i - 1  with the 
break D somewhere on the path, so that one can write 

b l b + l ) / 2  

d4(B) = 1 iIJ?'-' (3.14) 
i = b  

A-A A A 
Figure 4. A diagrammatic representation of transforming a E'" generating function into 
a group of generating functions of the type D"'. 
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which proves that d4(B*) is equal to A I  given by (2.21). Since, on the other hand, we 
have found that A: > A l  in each particular case (see table l),  we may finally conclude 
that D(r) obeys the power law 

(3.15) 

for l < r < r , .  
For r >  r,, B(')  rapidly decreases to zero, and so does C'" since the polynomials 

cl( E )  and c2( B), as can be easily verified, do not contain constant terms. At the same 
time, the function A"' rapidly approaches a finite value approximately given by 

A"'= K1(&)A;O (3.16) 

since the constant term of a l ( B )  is equal to one and C(r) vanishes. The function D(r )  
also approaches a finite value 

D(') 2: (3.17) 

as the constant term of d , ( B )  is one, C ( r )  vanishes and d, (B)  does not have a constant 
term. Here, K , (  E )  is a factor of proportionality which depends on the choice of E but 
does not depend on S that measures distance from the fixed value B*. 

The preceding paragraphs provide enough results to calculate the critical exponent 
'y. The final observation concerns the generating function (2.3). For general by we 
argue that C(x) has the following form: 

C(X) = 1 [ b ( b  + 1)/2]-'{ql(B~'-1')[A'"']2+ q2(B'r-")"r-''C(r-1) 

0"' 2: K ;A ; r  

m 

r = l  

+ q 3 ( ~ ( r - 1 ) ) [ c ( r - 1 ) ] 2  + q4(B(r-1))D(r-1)} (3.18) 

where qi(B(r-')) are polynomials in B(r-'), such that only ql(B(r-l)) has a constant 
term, being equal to 3b(b-1)/2.  The above form of C(x) springs from the four 
possible open paths within the rth-order triangle (see figure 5 ) .  

Taking into account results (3.9), (3.10), (3.15), (3.16) and (3.17), and approximating 
the sum in (3.18) by its largest term we find the asymptotic form 

(3.19) C ( X )  - K , { G / [ b ( b  + 1)/211'O 

Table 1. The eigenvalues (2.21) and (3.11) of the RG transformations, and the critical 
exponents (a, v, y )  together with the connectivity constant ( k ) ,  for SAW on the sequence 
of the fractals studied. The values for A z  and y for the b = 8 fractal are missing because 
generating the necessary RG transformations required a computational time that was 
beyond our capabilities (see the appendix). The data for-the fractal dimension ( d )  follow 
from the formula ( l . l ) ,  while the spectral dimensions ( d )  are given according to table 1 
of Hilfer and Blumen (1984). 

b A1 A 2  a Y Y 

2 2.381 97 3.145 60 
3 3.991 93 6.639 47 
4 5.802 90 11.645 0 
5 7.789 84 18.377 9 
6 9.936 01 27.058 3 
7 12.241 1 37.955 5 
8 14.661 2 - 

0.7342 0.7986 
0.7056 0.7936 
0.6905 0.7884 
0.6808 0.7840 
0.6741 0.7803 
0.6697 0.7772 
0.6655 0.7744 

1.3752 
1.4407 
1.4832 
1.5171 
1.5467 
1.5738 

P 

1.6180 
1.8144 
1.9750 
2.1075 
2.2186 
2.3128 
2.3939 

d d 

1.5850 1.3652 
1.6309 1.4032 
1.6610 1.4285 
1.6826 1.4471 
1.6992 1.4617 
1.7124 1.4734 
1.7233 1.4833 
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Figure 5. The four possible SAW paths within an rth-order triangle. 

which, upon substituting the expression (3.6) for ro ,  turns out to be 

C(x)  - K4( E /  (3.20) 

with 

y=ln[2A:/b(b+l)]/ln A l .  (3.21) 

Therefore, we have succeeded in expressing the three critical exponents a, v and y in 
terms of the two eigenvalues A I  and A 2 .  In the next section we present particular 
results for all these quantities for 2 s  6 s 7 (and A I ,  a and v for b = 8) and discuss 
their significance. 

4. Results and discussion 

Specific results for the critical exponents a, v and y for SAW on the studied fractals, 
together with the necessary eigenvalues A ,  and A 2  and the connectivity constant p, are 
given in table 1 (for the sake of completeness we add in table 1 the relevant values of 
the fractal and spectral dimensions). In view of the fact that the generated RG 

transformations are exact (see, for example, Dhar 1978, Rammal et a1 1984), the 
presented results should be regarded as exact as well. Thus, the best way to assess a 
possible significance of these results is to make comparisons with existing phenomeno- 
logical predictions. 

We start our discussion with the critical exponent v, as it has been been most 
frequently studied in the past. In figure 6 ( a )  we have depicted the exact results for v 
and the following two phenomenological proposals: 

vF = 3/(2 + d) (4.1) 
and 

vRTV = 3d/d(2 + 2). (4.2) 
The former was proposed by Kremer (1981) and Sahimi (1984) and appears to be a 
straightforward generalisation of the self-consistent Flory formula v = 3/(2 + d )  (Flory 
1953, Fisher 1969). The formula (4.2) was surmised by Rammal er a1 (1984) and almost 
simultaneously by Sahimi (1984). There is an additional closed-form expression for v: 

v A =  (4+  d ) /4d  (4.3) 
proposed by Alexandrowicz (1984), who assumed (4.3) to be valid in the region 
4/3 d d d 4, which certainly includes fractal dimensions of all members of the studied 
fractal family. However, values of v that follow from (4.3) lie well above those obtained 
from (4.1) (for 2 s b S 4 the former lie out of the frame accepted in figure 6 ( a ) ) ,  and 
for this reason vA is not plotted in figure 6 ( a ) .  On the whole, it is evident that none 
of the quoted formulae matches the exact results for v (except for b = 2, vF is a better 
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Figure 6. ( a )  The critical exponent Y as a function of the parameter b which enumerates 
all members of the studied family of fractals. The full  curve which connects the obtained 
exact results ( A )  serves merely as a guide to the eye, as well as its broken continuation. 
The curves labelled by u F  and vRTV represents the phenomenological proposals (4.1) and 
(4.2), respectively. ?e curve uRTv is drawn in the interval of b ( 2 s  b = s  10) for which the 
spectral dimension d has been tabulated (Hilfer and Blunien 1984). The full circle 
corresponds to the result believed to be exact in the case of a two-dimensional homogeneous 
lattice (Nienhuis 1982). ( b )  The exact results and phenomenological predictions for the 
critical exponent a. The labelling is the same as in the case of U. 

approximation than vRn, although it was conjectured (Rammal et a1 1984) that vRTV 
might be an improvement on vF). Therefore, one may observe that the critical exponent 
v for SAW on fractals can hardly be a simple (rational) function of the fractal (6) and 
spectral dimensions ( d )  alone and, on the strength of this observation, one may 
conclude that additional intrinsic properties of fractals should be taken into account 
in further attempts to establish a general formula for v. 

Before passing on to the critical exponents a and y we note that all three expressions 
(4.1), (4.2) and (4.3), when d + 2  (i.e. when b- .m in the case under study), converge 
to $, which is the value of v believed to be exact for two-dimensional homogeneous 
lattices (Nienhuis 1982). As regards the exact values of v for the studied fractals, we 
may expect that they converge to $ (when b + a) as well, since the last member of the 
fractal family appears to be a wedge of a homogeneous triangular lattice and it has 
been corroborated (Guttmann and Torrie 1984, Cardy and Redner 1984, De'Bell and 
Lookman 1985) that the critical exponents of a wedge and the bulk should be the 
same. Moreover, a comparison of our figure 6 ( a )  with figure 2 ( a )  of DjordjeviC er a1 
(1983) reveals that convergence of exact values of v, obtained for the fractals, to is 
at least as convincing as the convergence of efectiue values of v, obtained by the series 
analysis methods for the homogeneous triangular lattice. 

In figure 6 ( b )  we delineate exact results for the critical exponent a, obtained 
according to formula (2.23), and two phenomenological predictions that follow from 
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formulae (4.1) and (4.2),  under the assumption that the latter are compatible with the 
relation (2.27). Again, it is evident that the phenomenological predictions d o  not tally 
with the presented exact results, although a better agreement could be expected for 
large b, i.e. when d approaches 2, in particular between exact results and  the Flory 
type prediction a F .  In connection with this expectation, it can be seen that the obtained 
exact results for a have not invaded the asymptotic region close to a = +  which is 
assumed to be exact for d = 2. Apparently, additional calculations (for b > 8) are 
necessary in order to demonstrate that the exact results for a converge, for large b, to i. 

The above conclusion is even more pertinent to the case of the critical exponent 
y which is depicted in figure 7 ( a ) .  This is not because of the completely different 
behaviour of the exact results and the phenomenological proposals, which will be 
commented on later, but because it seems that the exact results for fractals can never 
approach the value y = assumed to be exact for the two-dimensional translationally 
invariant lattices (Nienhuis 1982). Likewise, it may seem that the total number of SAW, 

given by expression (2.1), could become larger for fractals (because of larger critical 
exponents y )  than C ,  for the homogeneous triangular lattice. However, such alarm 
is not tenable, even if y continues to increase (for b > 7 ) ,  since the behaviour of CN 
is governed by the term p and from figure 7( b )  it is plausible that the connectivity 
constant p for the fractals is never larger than p -4.149 for the triangular lattice 
(De’Bell and Lookman 1985). On the other hand, we may expect that y for the fractals 
will start to decrease after reaching a maximum for b > 7 .  This expectation springs 
from the established relation of the SAW model with the n + 0 limit of the n-vector 
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1.3 I I  I I I I 
I !  1 ! ! 1 
l b 5  L 3 

116 

0.7 i ( b )  
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0.5- 
l/lJ 

0.L- 

116 

Figure 7. ( a )  The critical exponent y as a function of b. I t  is expected that the exact 
results ( A )  will reach a maximum for a b > 7 and start to converge to the result (0)  
presumed to be exact for a two-dimensional homogeneous lattice (see the text). The curves 
labelled by yA and ypp represent phenomenological proposals (4.4) and (4.5), respectively. 
( b )  The reciprocal of the connectivity constant /I. The labelling is the same as in the case 
of y. 
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model and from the general behaviour of the critical exponent y as a function of n 
and the continuous dimension d (see, for example, figure 3 of Fisher (1974)). There 
are valleys in the corresponding contours of y which are convex towards the d axis 
and thus strongly suggest that for the fixed n ( n  = 0) one may expect a maximum of 
y for a certain fractional dimension. Consequently, we anticipate that additional 
calculations will show that the exact values of y for the fractals will start to approach, 
for large b, the exact value (E) for the triangular lattice or, possibly, a lower value 
that is pertinent to a section of the triangular lattice (De'Bell and Lookman 1985). 

Concerning the comparison of the exact results for y with the phenomenological 
proposals, we observe that neither the formula 

y A = 8 / ( 4 + 6 )  (4.4) 

ypp=6/(2+& (4.5) 

nor the formula 

predicts the behaviour displayed by the exact results. The former was derived (Alexan- 
drowicz 1984) from random walks through a progressive exclusion of walks with loops 
(and is connected with the formula (4.3) by the relation yvd=2),  whereas the latter 
appears to be a generalisation of the recent completion (Pietronero and Peliti 1985) 
of the Flory self-consistent approach. One should also oherve that both formulae 
(4.4) and (4.5) do not predict the presumably exact value -y=g for the triangular 
lattice, although yA provides a better approximation. Besides, neither of the formulae 
agrees with the shape pertinent to the Fisher contours (Fisher 1974) for y, in the ( d ,  n) 
plane, in the entire interval 1 d c 4. Therefore, if the formulae yA and ypp provide 
reasonable approximations for the critical exponent y of SAW on fractals, it can only 
be for fractals embedded in the Euclidean spaces with d > 2 and, thereby, not for the 
fractals studied in this paper. 

In conclusion, we point out that in this paper we have obtained exact results for 
the critical exponents of SAW on a sequence of an infinite class of two-dimensional 
fractals. These results show that the critical exponents cannot be represented by simple 
functions of the fractal and spectral dimensions alone. In addition, we argue that the 
obtained results, particularly those for the critical exponent v, demonstrate that by 
studying SAW on fractals, i.e. on dilatationally invariant lattice, one can probe via exact 
results the criticality of SAW on a homogeneous (translationally invariant) lattice. 
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Appendix 

Here we present coefficients of the RG transformations (2.11a), (3 . la)  and (3.lb).  For 
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the sake of compactness, we give the following closed-form expressions: 
b ( b + l ) / 2  

E'= /biBi 
i = b  

b( b+ I ) / 2 -  I 

a l ( B ) =  pbiB' 
i = O  

b ( b + 1 ) / 2 - 1  

i = b  

b ( b t l ) / 2 - 1  

C , ( B ) =  sbiBi 

c ~ ( B )  = fbiBi 
i = m  

where in the last sum m is equal to 2 and 4 for b = 2 and b = 3, respectively, whereas 
m = b + 2  for 4 s  b s  7. 

The coefficients Ib,, Phi, qbi ,  sbi and fbi can be calculated straightforwardly for 
2 zz b zz 4, whereas for b > 4 the calculation has to be computerised. Thus, the b = 5 
and b = 6 coefficients can be calculated on a personal computer (for example, on the 
ZX Spectrum computer). On the other hand, calculation of the sets and 
{ p 7 i ,  q7i ,  s7i, f 7 i )  required 0.5 and 3 h on the PDP 11/70 computer respectively, while 
calculation of the set { I s i }  required 24 h on the same computer. 

{hi}={19 1) 

{/3il={19 39 1, 21 

{I4i}={1, 69 6, 9, 99 9, 4) 
{Isi)  = (1, 10, 20, 30, 54, 68, 98, 94, 86, 38, 16) 

{&i}={1, 15, 50, 90, 201, 327, 604, 898, 1392, 1687, 1985, 1720, 1371, 757, 334, 68) 

{l7i}={l, 21, 105, 245, 605, 1244, 2555, 4850, 9028, 15551, 25621, 38 111, 52865, 
64 698, 71 615, 69 027, 58 384, 41 413, 23 883, 10 380, 3038, 464} 

571 346, 974 364, 1553 648, 2326 497, 3220 025, 4140 261, 4871 926, 
5259672, 5112431,4457613,3397446,2235226, 1222228, 538776, 
176 598, 38 418, 3838) 

{lgi}={l, 28, 196, 602, 1625,4012,9044, 20061, 41 929, 86 166, 168 393, 319 136, 

{PZi)={lr 2, 2) 
{P3i}={1, 2, 6, 8, 8, 6) 

= (1, 2, 6, 16, 32, 46, 62, 64, 50, 24) 

{psi)={l,  2, 6, 16, 48, 110, 206, 358, 558, 774, 914, 902, 714, 380, 134) 
{p6i)={1, 2, 6, 16, 48, 142, 366, 806, 1652, 3150, 5622, 9302, 14000, 19 140, 23 208, 

24 808, 22 320, 16 756, 9732, 4102, 932) 

198 214, 328 106, 506 598, 724 656,951 780, 1136 934, 1220 670, 
1163 212, 966 802, 682 910, 396 204, 176 160, 54 190, 8656) 

{ P , ~ }  = (1, 2, 6, 16, 48, 142, 430, 1190, 2932, 6740, 14 660, 30 372, 59 956, 112 296, 

{q2i )  = (2) 
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(q31) = (2, 4, 4, 10) 

{q41}={2, 4, 12, 22, 46, 60, 54, 42) 

{ q 5 ! }  = (2, 4, 12, 38, 82, 188, 358, 590, 820, 894, 866, 492, 228) 

{q6,)={2, 4, 12, 38, 114, 288, 706, 1610, 3228, 6234, 10290, 15 810, 20878, 24814, 
24 172, 19 912, 12 508, 5810, 1460) 

Is7,} = (2, 4, 12, 38, 114, 352, 966, 2546, 6328, 14 622, 32 206, 66 448, 128 702, 
230660, 385328, 592798, 836572, 1067984,1223338, 1236980, 
1092 246, 814 010, 500 688, 233 778, 75 556, 12 524) 

{ S * J  = (1) 

{'31}={l, 5 9  4, 

{sq,} = (1, 8, 24, 44, 35, 20) 

{ ~ ~ ~ } = { 1 ,  12, 46, 146, 343, 544, 637, 568, 366, 116) 

{ S 6 1 } = { 1 ,  17, 86, 296, 969, 2580, 5604, 9658, 14 224, 17 706, 18 569, 15 569, 9875, 
4034, 886) 

{ s ~ ~ }  = (1, 23, 153, 597, 2109, 6754, 19 770, 50 126, 109 890, 211 291, 363 649, 561 131, 
776 409, 952 812, 1021 693, 934 685, 707 334, 425 579, 192 674, 58 016, 
8372) 

{ f z , )  = 13) 

{f3J = (9, 81 

{ f 4 , }  = (31, 64, 43, 40) 

{f51)={2, 123, 374, 565, 780, 772, 552, 196) 

{f61}={2, 34, 523, 2074, 4808, 9060, 14665, 19718, 22663, 20368, 13 597, 5778, 
1408) 

{ t 7 1 }  = (2, 46, 306, 2475, 11 622, 34 560, 83 292, 175 296, 323 896, 538 266, 795 044, 
1039 666, 1179 286, 1 I32 484, 892 030, 558 073, 261 328, 80 910, 11 804}. 

Now added in prooj We have obtained A, and y for the b=8  fractal. T h e  corresponding results are 
A,=51.3531 and y =  1.5991. We are grateful to Professor H E Stanley (Boston University) who provided 
an opportunity for one of the authors (SM) to perform the relevant calculation at the Boston University 
Academic Computing Center. 
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